
T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

Twilio Microvisor—Architecture and Design
Considerations for Modern IoT Infrastructure

whitepaper

contents

• Introduction

• Part I: The Challenges of Connecting Devices

• Part II: Implementing a New IoT Architecture with
Twilio Microvisor

• Conclusion

Introduction

The Internet of Things is at a critical juncture. Repeating past
mistakes—specifically those related to security and maintenance—
will slowly but surely erode confidence in IoT, and its ability
to contribute to addressing the myriad of problems that both
businesses and the environment face. It’s time to change the
way we work on embedded systems.

Based on a decade of hands-on experience with the development
and maintenance of real world IoT solutions, this white paper
explores the unique issues and challenges that connecting devices
to the Internet brings. The paper is organized into two parts.

Part I addresses a broader audience, such as IoT product/
project managers and CTOs. It lays out a typical device-side
IoT architecture and describes the traditional approach of
implementation. It details the associated challenges and develops
an argument for a different approach, now made possible through
new hardware advancements.

Part II addresses the experienced embedded engineer and
explains Twilio’s thinking with regard to how the above-mentioned
challenges can be effectively addressed with a new architecture.

Authors: Joe Birr-Pixton, Toby Duckworth, Hugo Fiennes, Peter Hartley, Phil Michaelson-Yeates

http://www.twilio.com

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

Part I: The Challenges
of Connecting Devices

Key Considerations for building an IoT device

Connected devices vs. unconnected devices
Microcontrollers have been used in products for many decades,
and have revolutionized product feature sets, reliability and
performance over time. Moore’s law has brought 16- and 32-bit
processing to even the smallest and cheapest consumer products,
and the availability of this memory and CPU power has enabled
the use of real time operating systems (RTOS) where previously
developers had to write “bare metal” code.

However, the transition from unconnected to connected
products—in the context of IoT—has uncovered fundamental
issues with how software is built for microcontrollers.

Connected device architecture
For IoT devices built around microcontrollers, a typical high
level system architecture might look something like the diagram
below. On the hardware side, there’s a microcontroller connected
to both networking hardware (Cellular/Wi-Fi/Ethernet) and to
the application hardware—the sensors and actuators used by
the IoT application.

In order to manage resources and tasks, an off-the-shelf RTOS is
typically used. There are many choices here such as FreeRTOS,
NuttX, ThreadX, and from a high level they all perform the same
tasks—allocation of both memory and processor resources to
different tasks within the system. To help decouple higher software
layers from the specific hardware involved, there’s usually also a
Hardware Abstraction Layer (HAL) which may be built into—or
sit alongside—the RTOS, taking care of the actual hardware
accesses to perform I/O.

Connected devices also need a network stack, typically providing
TCP/IP networking. The bottom of the stack talks to the network
hardware to exchange packets, and the top of the stack provides
stream and datagram APIs. On top of this is layered the security
stack, to provide authentication and encryption services used by
both cloud communications and FOTA (Firmware Over-The-Air
update) services.

At the very top, there’s the application, implementing the specific
functionality of the device at hand. This talks to the application
hardware and the system services and additionally takes care of
cloud communication.

Usually, the stack has been integrated by the device maker:

• Blue parts in the diagram shown above indicates those that
are completely unique to the application

• Red indicates parts that are more often than not open-source or
vendor-provided codebases (such as FreeRTOS, lwip, mBedTLS)

• Purple indicates areas which may be based on open-source or
vendor code but are often heavily customized for the application.
For example, the cloud communication code may be an open-
source client for MQTT (a widely used messaging protocol),
but with modifications to use customer TLS certificates.

Integration & maintenance challenges
Some pre-integration often exists—for example, Arm provide
packaged releases with Mbed OS, network stack and security
stack, and Infineon/Cypress provide FreeRTOS, lwIP and Mbed TLS
as part of their WICED platform (Wireless Internet Connectivity
for Embedded Devices, a platform to enable Wi-Fi and Bluetooth
connectivity in system design). Yet the design decisions made by

Application

Security stack

Network stack

Microcontroller

Network hardware Application hardware

RTOS HAL

FOTA services Cloud communication

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

these integrators do not always line up well with the application
requirements, resulting in heavy developer customization. That,
in turn, comes with the additional complexity of having to merge
new releases from the supplier with the existing code base.

Merging changes from suppliers is a requirement to maintain
system stability and security over the long term—and in IoT
deployments that can mean a decade or more—, especially as
these packages usually include code that is directly network-facing,
which is easiest for an attacker to target. While some vendors
provide long term support branches (“LTS”), which retain API
compatibility for essential security updates, the definition of
“Long Term” is often not compatible with a product’s lifecycle.
For example, Mbed TLS has LTS releases which offer security
updates without API changes for up to 3 years. But beyond
that, the developer would need to integrate a possibly radically
different API to maintain a secure product—or heavily compromise
a product’s security by continuing to rely on out-of-date code.

As always, the more software you’re writing or integrating, the
more maintenance you will have to perform on this code over the
product’s entire lifecycle. Whereas an unconnected product might
comprise 90% application code and 10% third-party code (and
ongoing maintenance isn’t required as physical access would
be required for any attack), connected products are often 20%
application code and 80% third-party code, all of which has to be
maintained to protect the user and manufacturer’s reputation.

Security design
Besides maintenance, there’s a very real problem with both
design and implementation of security components. As with
any specialist field, there’s a lot of expertise required to make
the correct trade-offs and design decisions when building a
connected product—and people with the appropriate skills are
rare and hence expensive to hire.

When areas of the product are being architected from scratch—
especially parts which may not be serviced adequately by well-
supported open source software—the risks associated with a
subtly-flawed design decision could be significant.

Value and cost predictability
As can be seen in the architecture diagram, there’s a huge amount
of software required to build a secure connected product—and
most of it does not depend on the application itself. Not only
is the time and money spent on integrating and maintaining
external components a huge burden to a product’s lifetime
costs, it is also essentially invisible to the end user, and doesn’t
differentiate the product in the market.

Millions of engineer-hours have gone into reinventing the
“connectivity wheel” for every single IoT product that has ever
shipped. Complexity, budgets, schedules and lack of relevant
domain knowledge has also meant that many of these products
suffer from latent security issues just waiting to ruin someone’s day.

Solving maintenance issues in IoT

As noted, one of the major challenges with solving the maintenance
issue in an MCU design is the close integration between the RTOS
and the application. Larger systems such as desktop computers
and mobile phones have always had an OS/application split, with
the platform supplier, e.g. Microsoft, maintaining the operating
system & network stack and providing updates over time to
keep it secure.

So, could these problems be addressed with a similar OS/
application split applied to embedded systems? There are three
issues that crop up:

• Who is responsible for maintaining and updating the operating
system, and how can they ensure that updates do not have a
detrimental effect on product operation?

• How much extra cost and complexity does changing OS (or
the way the OS is integrated) bring to development?

• What’s the impact on the Bill of Material (BOM) cost to
provide this split?

Responsibility for updates
When compared to a desktop or mobile application, embedded IoT
applications are vastly different. Most desktop applications—and
almost all mobile applications—are human-centric, providing a

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

service or function to the user via processing and connectivity
provided by the host device. As such, performance and consistency
are appropriate for humans; the user interface might change,
a screen might take a couple of seconds longer to appear, or
functionality may be degraded if connectivity is not available—but
humans quickly adapt.

In comparison, an embedded IoT application is I/O-centric and
may have non-negotiable performance targets—whether these
are for response time, functionality in the event of degraded
communication, or power consumption. These targets depend
on the specific use case of the device.

This different set of developer expectations, coupled with the
reality that updates have to be deployed to unattended devices
that may be physically entirely inaccessible for their lifetime,
result in a very different burden on the shoulders of whoever
maintains the devices.

Essentially, the developer needs to have confidence that no third
party updates will ever break the deployed application. There are
two ways the maintainer can help relieve developer concerns:

1. Comprehensive testing. A cursory smoke check or ad-hoc
manual quality assurance is not going to uncover the insidious
issues that cause problems with embedded systems. All
relevant guaranteed behavior and performance has to be tested
continuously (so regressions can be addressed well before any
release) and in an automated fashion (so that testing is always
performed in a consistent manner).

2. Minimized functionality. Almost as important as testing is
minimization of the maintained footprint. The less functionality
that is delegated to the third party, the less functionality that
could change behavior in the event of an update. In the real
world, device performance can vary based on factors out of
anyone’s control—RF (Radio Frequency) propagation or network
routing, for example. And when diagnosing such issues, being
able to remove third-party updates from the list of possible
culprits is very helpful.

Just as hardware developers are intimately aware of DFM
(Design for Manufacture, a set of practices that help products
move smoothly from prototype to production with high yield and

minimal field failures), software developers are aware of DFT
(Design for Testability).

In the world of long-lived IoT products, consistent testing over
long periods of time is essential. This means that testing must
be automated vs. manual, as people working at an organization
will change over time. As such, at a minimum, OS and networking
code must be defended with a full suite of automated tests: from
build-time unit testing to system testing on target hardware, to
regular fuzz testing of external interfaces in order to uncover
unintended behaviors. This level and duration of DFT and test
automation is obviously expensive.

Complexity of development and the impact on cost and BOM
Just as developers get comfortable with a particular Instruction
Set Architecture (ISA), they also get expertise in an operating
system architecture, a set of development tools, and development
& debug workflows. Changing any of these components—even
for tangible long-term gains—is painful in the short term and can
introduce uncertainty in project schedules.

In an ideal world, a developer would be able to continue to use
their preferred tools and RTOS while still having someone else
provide the essential maintenance for long-term support.

One advantage of linking the operating system with the application
is that it becomes easy to only pull in OS code that the application
actually makes use of. This reduces the footprint of the OS and
hence reduces the overall memory usage of the product.

Adding any functionality to an embedded system—even reliable
FOTA—does increase the hardware BOM cost, mainly related to
flash and RAM usage. Unfortunately, there’s no real way around
this, but the upsides are significant and the incremental costs
are generally small, especially when compared to the cost of
application development.

Maintained microvisor vs. maintained operating system
It’s clear from the sections above that attempting to provide a
single maintained RTOS for a wide variety of applications is only
going to be successful for a subset of developers—those who are
already familiar with the chosen OS, and those who do not rely
on custom modifications to that OS.

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

If, however, we approach the problem from a different angle
and instead look at what services we are trying to provide to the
embedded developer, a new solution appears: a hypervisor that
runs alongside the developer’s RTOS and application code and
insulates it from common attack vectors. Let’s call it a microvisor.

The areas which are security-related and hence require long-term
maintenance are:

• Secure boot, as attackers may target the boot process, and
countermeasures may need to be deployed. A breach here
could expose keys, application code, and more.

• Network stack, as this can be attacked via the local network
(and in some cases, via the internet).

• Security stack, as crypto algorithms will need to evolve over time
as protocol bugs are discovered and algorithmic weaknesses
are discovered.

• FOTA & connectivity services, which are built on top of the
aforementioned layers and hence will also evolve over time.

• Network drivers, as issues can appear over time with wireless
networks evolving (compatibility updates, fixes for security
issues in wireless module firmware, etc.)

With appropriate hardware support, such a microvisor can be
built—one which claims the necessary peripherals for network
support at boot time, and establishes an application-independent
connection to the cloud service that provides FOTA updates. But
aside from that, it stays largely out of the way of the developer’s
application and choice of RTOS.

The microvisor can then protect itself from attack, whether it
be via hardware tampering or a network interface. It can also
protect the developer’s application from a large variety of attacks.

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

Part II: Implementing a
New IoT Architecture
with Twilio Microvisor

Overview

We are now taking a deep dive into what a microvisor architecture
looks like; in particular, how Twilio is approaching design with
Twilio Microvisor.

Revisiting our device architecture diagram, a microvisor-based
system looks like this:

We now have a very clear division between domains in the
microcontroller; the red parts on the left are provided and
maintained by Twilio, and deal with security and network services.

On the right, the blue parts all come from the developer—including
their choice of RTOS. For maximum compatibility with existing
code, the application can include its own network and security
stack, allowing third party libraries such as those provided by
Amazon to connect to AWS IoT to be used without modification.

This architecture is enabled by Arm’s TrustZone® technology,
which—at a silicon level—enables process and resource isolation.

The processor core itself adds banked resources for “secure” and
“non-secure” modes, and this separation extends through the bus
fabrics to individual peripherals and memory areas which can be
configured to only be accessible from a specific zone.

Additionally, the silicon supported by the Twilio Microvisor includes
other specialist security features such as DPA (Differential Power
Analysis) resistant cryptography accelerators, tamper detection,
and so on.

This architecture allows the developer’s RTOS and application to
run mostly unchanged, able to talk to non-networking hardware
without any interference, and essentially run as if they were on
a normal MCU. There is no degradation in performance as the
microvisor is only involved in boot- and network-related operations.

The secure “bubble” that the application runs within also largely
removes the requirement for RTOS maintenance—the developer
can rely on the microvisor to protect the boot process, mitigate
at least first level network attacks, and provide a secure and
fail-safe way to update RTOS, application and application keys
when required. Fewer updates here mean less ongoing QA for
devices that have shipped and lower product maintenance costs.

Microvisor peripheral usage

At boot, the microvisor assumes control of peripherals required
for its operation. These fall into four categories:

Microvisor system
As the microvisor starts first, it is responsible for initializing the
oscillators and clock tree. A single timer peripheral is used for
microvisor purposes.

Off-die storage
The on-die flash is valuable due to its performance and security
characteristics, hence it is not used for storage of already encrypted
data such as staged OTA upgrades. Secondary storage, in the
form of an external QSPI flash, is used for these purposes—and
as such the QSPI device is managed by the microvisor.

Twilio Microvisor Customer application

Security stack Application security stack
(optional)

Application

Application network stack
(optional)Network stack

FOTA
services

Network hardware

Trustzone-M capable microcontroller

Application hardware

RTOSHALMicrovisor OS HAL

Cloud
communication

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

Excess space in the QSPI device is available for application use
via microvisor APIs.

Networking peripherals
As the microvisor manages the connection to the internet, the
communications peripherals necessary for this are claimed by
the microvisor at startup.

For Wi-Fi, BLE and Ethernet—at least on the initial silicon—that
means the SDIO peripheral, and for cellular this means either
USB host or UART, or both in some cases. Required control and
clock lines are also claimed.

Diagnostics
A tricolor LED is used to indicate system status.

All other peripherals in the MCU are available for uncontended
application use, just as they would be in a non-microvisor
system—i.e. they are found at the locations documented in the
MCU’s datasheet and are connected to the application NVIC
and DMA controller as expected.

Memory

The majority of on-die memory, both flash and RAM, is available to
the application. Because the initial part that the Twilio microvisor
ships on has not yet been announced, we can only give further
details under a 3-way NDA with the silicon vendor.

Networking

The microvisor takes responsibility for the cloud-facing network
interfaces. In order to provide FOTA services, it needs to be able
to establish a secure outbound connection to the companion
Twilio service.

Included in this responsibility is maintenance of the firmware that
runs within the external controllers/modems, as this firmware
has been targeted by hackers many times in recent years and
so applying updates to these subsystems is an essential part of
maintaining the device security boundary.

With a TCP stack already being attached to the interface, a
traditional OS-like approach would provide a socket API to the
application, allowing sharing of the stack overhead between the
microvisor and application zones; there are downsides to this
approach though:

• Compatibility. Existing applications and example code could
need extensive modifications to talk to the microvisor socket
API. Unlike a linux application, embedded applications are
often written to work with non-BSD type socket interfaces
with different threading models.

• Memory usage. Because the network stack is running in the
microvisor zone, RAM allocations for packet buffers and so
on would also need to come from the microvisor zone—likely
limiting application performance for protocols like TCP where
the send buffer size is directly related to upstream throughput.

As such, the microvisor provides a virtual network interface
which accepts (and delivers) raw packets as if it were a physical
interface. This is a much easier layer at which to connect to any
network stack, as all stacks are designed to be portable across
network types.

The downside of this approach is that in many cases there will be
two TCP stacks running within the microcontroller—one for the
microvisor and one for the application—though the microvisor
stack is by default optimized for space vs. performance.

Applications that are happy relying on the microvisor and cloud
service to provide the secure cloud tunnel can instead just
exchange messages using microvisor APIs, with the microvisor
assuming responsibility for safe and secure transfer of data to
and from the cloud.

Some applications also have non-cloud facing network interfaces—
for example, a ZigBee or LoRA gateway product. These network
interfaces are totally managed by the application code, without
any microvisor involvement.

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

First boot
The Twilio Microvisor installation process permanently configures
the MCU to boot in secure TrustZone mode with the entrypoint
being in secure on-die flash.

Startup flow
A simplified version of the startup flow is illustrated below; in
the event that no verified code is available to run, the device will
wait for the service to provide a valid image. For more detail on
upgrade signing, see FOTA upgrades below.

Application of staged updates
At cold boot, or after an upgrade has been downloaded, the
microvisor’s secure boot stub will check for valid upgrade data
in external QSPI and decrypt and apply this upgrade package—
which can include updates to the upgrade code—to the internal
flash areas. This process applies to both microvisor updates and
application updates; after successfully writing this upgrade data,
the external QSPI image is invalidated, ensuring that pending
upgrades are applied fully even in the event of a power loss or
unexpected reset.

Microvisor image verification
The next step in the boot process is a cryptographic verification
step for the microvisor, whereby the internal microvisor flash
content is hashed and checked against a signed manifest, also
stored internally. If this step fails, the device has likely been
tampered with (or has suffered a hardware failure) and will not
boot. Devices can be recovered from this state by loading the
QSPI with a correctly signed and encrypted upgrade image which
will refresh the internal flash state.

Successful verification results in the microvisor being entered
by the boot stub.

Interrupt handling

There are two NVICs in the microcontroller, one being dedicated to
the microvisor and one to the application. Because the majority of
the MCU peripherals are assigned to the application, the microvisor
interrupts are all related to either the upstream communications
peripherals or to the microvisor scheduler.

Due to the dedicated NVIC, the application & application RTOS
do not require any modification to work with the microvisor—an
interrupt raised by an application peripheral will be decoded,
prioritized and executed just as it would be in a system without a
microvisor present. Unless the developer calls into the microvisor
from their interrupt handler, no microvisor code is run in an
application interrupt path.

Reset

Verify memory area
against signed manifest

Verify & apply upgrade
from QSPI

Connect to service &
download update

Clear application RAM

Start application

yes

no

Upgrade
staged?

Verified
OK?

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

Interrupt priorities
In order for the microvisor to be able to regain control over an
errant application, some microvisor interrupts must take priority
over application ones. Without this, a buggy application could
preempt the microvisor continuously and cause a device to
become unrecoverable.

This has important implications for application interrupt handling
though—as the majority of peripherals are on the application
side, the majority of interrupt handlers are also on the application
side. Many handlers will be timing critical—for example, a UART
interrupt handler must read data from the UART holding register
before the next byte arrives to prevent data loss.

In order to prioritize application interrupts appropriately, high
priority interrupts are wrapped by the microvisor which then
dispatches them from microvisor mode. This guarantees that
they can interrupt network processing and other management
tasks, while still ensuring the microvisor can regain control of
execution if required.

IRQs that are natively handled by the application NVIC cannot
interrupt microvisor code and as such may see longer latencies
in circumstances where the microvisor is busy.

In either case, the ISR code is identical to such code running in
a non-microvisor context.

Exception handling

Reporting/crash logging
Uncaught exceptions result in the microvisor collecting information
about the exception (register snapshot, stack dump, optional
memory dump) and optionally persisting this information until
it can be reported to the service.

This allows crash reports to be collected en-masse from an
installed base by an application developer and used to improve
software quality.

Non-banked exceptions
Some processor exceptions are not banked between microvisor
and application zones by the Cortex-M33 core, such as Hardfault
and Busfault. As such, these faults are always handled by the
microvisor.

The SecureFault exception, triggered when application code
attempts to access microvisor memory or peripherals, is caught
by the microvisor and reported via the standard crash reporting
mechanism. The application code is restarted as if it had been
cold-booted.

Banked exceptions
These exceptions—MemManage, UsageFault, SVcall, SysTick—
are delivered as would be expected on a non-microvisor system.

The banking—and banked MPU—ensure that the application
RTOS can use memory protection to catch errant behavior
without involving the microvisor, ensuring application-consistent
behavior of the system when such exceptions are encountered.

Watchdog
The microvisor can provide a watchdog for application code with
a configurable period. If the watchdog is not refreshed in the
appropriate interval, the application will be reset as if a hardware
watchdog had fired.

FOTA upgrades

A key feature of the microvisor is the FOTA (firmware over-the-air)
upgrade system. This system allows the whole application—or
just parts of it—to be updated on any number of devices at a time
convenient to the application.

Application manifests
An application package contains a manifest, which defines what
code/data should be stored in each defined memory area—
either within on-die flash or in QSPI flash. The service is aware
of the device’s current operational manifest, and so when a new

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

package is queued for FOTA, only areas which do not match will
be deployed to the device.

The manifest also allows a device to—regardless of connectivity—
cryptographically verify the application is complete before
execution.

Customers can deploy public keys to the device & service at time
of manufacture and sign any or all parts of the manifest with the
corresponding private keys. This process allows the service to
verify that a manifest should be accepted by a device—rejecting
deploys by a bad actor with service access early in the process.

In the event of the service being severely compromised, the
device itself verifies the signatures after staging and will reject
incorrectly signed upgrades without disturbing the currently
valid and running code.

Upgrade staging
The microvisor takes care of moving data required to apply an
update from the cloud to a staging area in device QSPI storage,
where it remains encrypted. Once the device has all the changed
parts of the application stored safely in the staging area, it applies
the upgrade in a fail-safe and restartable way, to ensure the
upgrade appears atomic from the application’s point of view.

Upgrade notification
The application can be notified during the upgrade staging
process, as it may want to indicate progress to an end user. Once
the staging process is complete, the application is notified and
can pick a convenient time to perform the upgrade.

If required, the customer can force the upgrade to be applied at
any time after staging; this may be used if the old code is behaving
badly, for example.

Power management

As noted earlier, the microvisor looks after the oscillators and
clock tree so that it can perform its management tasks. It also
manages the various sleep modes that the system can enter to
save power.

Deep sleep
The lowest power mode available is deep sleep, in which only
the RTC and backup RAM is powered, with the processor and
all other peripherals powered down. The first silicon draws less
than half a microamp when in deep sleep mode.

Exit from deep sleep can be triggered by an RTC timer or a wakeup
pin, and looks to the application like a cold boot. The reason for
application boot is available via a “wake reason” microvisor API.

The application enters deep sleep by configuring wakeup pins as
necessary and then calling a microvisor API specifying a wake time.

Shallow sleep
In this mode, RAM and GPIO states are preserved, and some
peripherals may remain clocked. Typically this mode is entered
using the ARM WFI instruction after configuring the MCU state,
but in the microvisor system the application calls a microvisor
API, which registers the application’s desire and synchronizes
sleep entry with other tasks that may be in process.

It’s the application’s responsibility, as with a non-microvisor
architecture, to ensure that wake sources are configured
appropriately before calling the sleep API.

Exiting this mode is typically via an interrupt either from a timer
or a peripheral.

System services

The microvisor provides additional services to the application,
which help with rapid application development and debugging.

Logging
Serial logging is often used during embedded development to
provide insight into program flow and state. Often this is regularly
flushed to determine where the application hit a serious issue
to aid debug. This approach is obviously still possible with a
microvisor application but doesn’t work remotely or at scale and
uses up a UART on the device.

T W I L I O M I C R O V I S O R – A R C H I T E C T U R E A N D D E S I G N C O N S I D E R AT I O N S F O R M O D E R N I OT I N F R A S T R U C T U R E

With the microvisor, a unidirectional logging stream can be written
to by the application. When the device has a connection to the
service, this stream is packetized, encrypted, and securely delivered
to the service where it can be viewed in the Twilio Console or
consumed by a customer’s application via service APIs, resulting
in a much more scalable and secure logging solution.

Console
Here, a bidirectional stream is made available to the application
by the microvisor, and securely surfaced via service APIs. This
allows an application to provide a traditional console interface
or REPL for interactive control with minimal overhead.

Debug
To maintain the system’s security boundary, the initial loading of
the microvisor code into the MCU at production time irrevocably
disables the hardware JTAG/SWD interface on the silicon.

However, as the microvisor has higher privilege than the
application on the MCU, it provides equivalent application debug
functionality to developers over the secure service connection.
This connection is routed through the service to a local gdbserver
stub on the developer’s machine, allowing any GDB compatible
debug tool to read & write memory, set breakpoints, single step
code, and so on no matter where the device is in the world and
how it is connected.

Note that a developer can mark areas in the manifest as non-
debuggable, which will disable these debug features within the
microvisor, helping protect against any possible cloud-based attack.

Conclusion

In the end, any architecture is a result of innumerable individual
design choices, guided by the learnings and experiences of the
team that constructed it. In embedded systems particularly—where
processor cycles and microamps are often critical—there is no
such thing as a free lunch, but we believe that the trade-offs we
have made are clearly justified in pursuit of long-lived security
and stability that can be conferred on any number of products
built on this base.

The team welcomes comments and discussion on our design; you can contact

us at microvisor@twilio.com. Thank you!

http://www.twilio.com

